1,062 research outputs found

    Direct Ultraviolet Imaging and Spectroscopy of Betelgeuse

    Full text link
    Direct images of Betelgeuse were obtained over a span of 4 years with the Faint Object Camera on the Hubble Space Telescope. These images reveal the extended ultraviolet continuum emission (about 2 times the optical diameter), the varying overall ultraviolet flux levels and a pattern of bright surface continuum features that change in position and appearance over several months or less. Concurrent photometry and radial velocity measures support the model of a pulsating star, first discovered in the ultraviolet from IUE. Spatially resolved HST spectroscopy reveals a larger extention in chromospheric emissions of Mg II as well as the rotation of the supergiant. Changing localized subsonic flows occur in the low chromosphere that can cover a substantial fraction of the stellar disk and may initiate the mass outflow.Comment: 9 pages, 5 figures, Betelgeuse Workshop, November 2012, Paris. To be published in the European Astronomical Society Publications Series, 2013, Editors: Pierre Kervella, Thibaut Le Bertre & Guy Perri

    Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR

    Get PDF
    Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13^{13}C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.This work was part supported by BBSRC Grant BB/G016240/1 via The BBSRC Sustainable Bioenergy Cell Wall Sugars Programme. ODB and ERdA are grateful to CNPq for financial support for this work via Grants # 159341/2011-6 and 206278/2014-4. ACP is grateful to the Royal Society for a Newton International Fellowship. PD is supported by the Leverhulme Trust grant for the Centre for Natural Material Innovation. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC, as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). (Contract reference PR140003 for work after 5 January 2015). DFT calculations of NMR parameters were performed at the Centre for Scientific Computing at the University of Warwick

    X-Ray Determination of the Variable Rate of Mass Accretion onto TW Hydrae

    Get PDF
    Diagnostics of electron temperature (T_e), electron density (n_e), and hydrogen column density (N_H) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 x 10^{-9} M_{\odot} yr^{-1}, for a stellar magnetic field strength of 600 Gauss and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N_H, T_e, and n_e by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars
    • …
    corecore